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PAG  ( Portable Animated Graphics ) is a special animation file format designed for high-performance rendering scenarios, which 
can store vector images, text, bitmaps and sequence frames at a very high compression ratio, and make full use of the hardware 
acceleration capabilities of each platform to quickly decode and render to screens of various sizes at high speed. The main features of the 
PAG file format are as follows: 

• Screen rendering. It is mainly designed for screen rendering scenarios, not for editable animation content exchange between various 
animation creation tools, so the key direction of optimization is rendering performance and file size. 

• Scalability. The basic data structure is based on the description of labeled data blocks, which allows for the continuous addition of new 
action feature support while maintaining backward compatibility with older file formats. 

• High compression rate. Pure binary data structure, dynamic bitwise storage with extremely high compression rate and similar block 
centralized compression technologies can achieve an average file size of only 10% to 50% of other formats for the storage of the same 
animation content.  

• File independence. A single file can integrate any resources, such as vectors, images, text, sequence frames, and even audio and video. 
The single-file delivery capability can achieve a more concise workflow. 

• High-speed rendering. The file format is simple and does not contain any string-matching process. Compared with the decoding 
speed of text configuration files, binary streams have significant advantages. This format can be optimized during encoding, and the 
direct data required for the rendered scenario can be converted in advance, so the animation content can be rendered on the screen faster. 

PAG files have the suffix.pag 

This chapter introduces the basic data types and the more complex data structures formed from them. All other data structures in the PAG 
document format are composed of these basic types. 

 

 
The PAG file format supports 8-bit, 16-bit, 32-bit, 64-bit signed and unsigned integer types. All integer values are stored in the PAG file in 
binary form. PAG's byte storage uses little-endian byte order: the lowest-order byte is stored at the lowest memory address, and the highest-
order byte is stored after it. All integer types are byte pairs. The first bit of an integer value must be stored as the first bit of the byte in the 
PAG file. 

Integer Table 

Type Remarks 

Int8 8-bit integer 

Int16 16-bit integer 

Int32 32-bit integer 

Int64 64-bit integer 

Uint8 unsigned 8-bit integer 

Uint16 unsigned 16-bit integer 

Uint32 unsigned 32-bit integer 

Uint64 unsigned 64-bit integer 



 

 
A byte bit is used in the PAG file to identify the Boolean type. 

Boolean Class Type Table 

Type Remarks 

Bool  0 : false ,  1: true 

 
The PAG file supports the single precision float type according to IEEE 754 standard. 

Float Type Table 

Type Remarks 

Float  Single precision (32 bit ) IEEE Standard 754 

 
For the same data type stored continuously, we add the [n] symbol after the data type to represent it, where n indicates the degree of the array. 
For example, Uint8[10] represents an array of Uint8 type, with a degree of 10. If two parentheses are added consecutively, such as Int8 
[n][m], it means a two-dimensional array, the length of the first dimension array is m, and each value type is an Int8[ n ] array. 

 
The PAG supports encoded integers of variable byte length. Four encoded integer types are supported. 

Encoded Integer Table 

Type Remarks 

EncodeInt 32 Variable-length encoded 32 -bit integer 

EncodeUint 32 Variable -length encoded 32 -bit unsigned integer 

EncodeInt 64 variable-length encoded 64 -bit integer 

EncodeUint 64 Variable -length encoded 64 -bit unsigned integer 

Variable-length encoding uses bytes as the minimum storage unit, and uses the first seven bits of a byte to store values, and the eighth bit to 
identify whether there is any value behind. If the 8th bit is 0, it indicates that the value has been read. If the 8th bit is 1, then read one byte 
down until the length is read (32 bits or 64 bits). 

The following is an example of parsing unsigned 32-bit encoded integers: 

 



 

uint32_t ByteBuffer::readEncodedUint32() { 

static const uint32_t valueMask = 127; 

static const uint8_t hasNext = 128; 

uint32_t value = 0; 

uint32_t byte = 0; 

for (int i = 0; i < 32; i += 7) { 

if (_position >= _length) { 

Throw(context, "End of file was encountered."); 

break; 

} 

byte = bytes[_position++]; 

value |= (byte & valueMask) << i; 

if ((byte & hasNext) == 0) { 

break; 

} 

} 

return value; 

} 

For signed 32-bit encoded integers, the unsigned 32-bit encoded value is read first, and then the high-bit identifier is determined. 

The following is the parsing of signed 32-bit encoded integers: 

 

int32_t ByteBuffer::readEncodedInt32() { 

auto data = readEncodedUint32(); 

int32_t value = data >> 1; 

return (data & 1) > 0 ? -value : value; 

} 

 
Bit  
The bit type value is a variable-length bit field that can represent two types of numbers: 

1. Unsigned integer 

2. Signed integer 

Bit values are not byte aligned. Other types of values, such as Uint8 and Uinit16, are always byte-aligned. If a byte-aligned type immediately 
follows a Bit type, zero padding is used for the extra bits in the last byte, except for the Bit value. 

The following example is a 64-bit data stream. 64 bits represent 9 values of different bit lengths, the last one is the value of Uint16. 

 



 

The first value of the bit stream is a 6-bit value (BV1), followed by a 5-bit value (BV2) that spans Byte1 and Byte2. The value of BV3 spans 
Byte2 and Byte3. BV4 is all in Byte3. BV9 is followed by a byte-aligned value, so the remaining 4 bits in the last Byte use zero padding. 

Bit Value Type 

Type Remarks 

SB[nBits] Integer (nBits is the number of specified bits) 

UB[nBits] Unsigned integer (nBits is the number of specified bits) 

   

Bit  
The Bit data type generally uses the smallest number of bits required for storage. Most Bit-type fields use a fixed number of bits. Generally, 
for a group of Bit type data, the minimum number of bits required for storage of this set of data will be calculated. The value of this smallest 
bit will be stored in another data structure. In this minimum bit range class, the extra bits are filled with zeros in high bits. 

 
Continuous Data Encoding 
We use the continuous data encoding method to store a set of continuous data of the same type to achieve the least number of data storage 
bits. 

 

For the storage of continuous unsigned integers, we add a header area in front of the continuous unsigned integer data. The data in the header 
area is used to identify the number of bits stored in the continuous unsigned integer data. The following continuous unsigned integer data will 
be stored according to this number of bits. 

Take the storage of continuous 32-bit unsigned integers as an example. The header area is 5 bits (32-bit unsigned integers occupy a maximum 
of 4 bytes, 32 bits. The range of values that can be represented by 5 bits is 0-31. Removing this situation with 0, the preset addition of 1 can 
indicate that the value range is 1-32). You should first calculate the maximum value and maximum value of continuous unsigned integer data, 
and then calculate the number of bits required to store the two values. The maximum value of the two will be stored in the header area, and the 
continuous unsigned integer data area stores unsigned integer data in sequence according to this value. 

Its structure is as follows: 

 

 

The storage method of continuous signed integers is the same as that of unsigned integers, the difference is that the nBits data read 
by unsigned integers all represent numerical content, while the first bit of the nBits bit read from signed integers represents the sign bit 
(0 positive, 1 negative), and the subsequent consecutive nBits-1 bits represent numerical content. 

The process of reading a single signed integer can first follow the unsigned integer and then convert it to a signed integer separately: 

 

 
For continuous float data, we usually retain the original precision and store it continuously according to the IEEE 754 standard without 
special compression. However, for continuous float data representing some special categories that allow loss of precision, the encoding 

int32_t ByteBuffer::readBits(uint8_t numBits) { 
auto value =  readUBits( numBits) ; 
value <<= (32 - numBits); 
auto data = static_cast<int32_t>(value); 
return data >> (32 - numBits); 

} 



 

method is to convert the float lossy data into integer data through the float/precision, and then follow the above method for continuous integer 
data format to encode. Currently, the following types of float data in the PAG file can be converted to integer storage according to the 
corresponding precision: 

Type Precision Remarks 

SPATIAL_PRECISION 0.05  When the float number represents coordinate points in space 

BEZIER_PRECISION 0.005 When the float number represents the precision of the Bezier curve easing parameter 

GRADIENT_PRECISION 0.00002 When the float number represents the precision of the gradient interpolation position 
parameter 

 

Specific to the decoding process, the parsed integer data is multiplied by the precision to obtain specific float data. 

 
In the computer storage method, Bool type data occupies 1 byte, 8 bits, but the effective data bit is only 1 bit, and redundant storage data 
occupies 7 bits. For continuous Bool type data, we only use one bit to identify, thereby reducing redundant data storage. 

 
Time 
Time in the PAG file is uniformly described using Int64. In order to improve the efficiency of caching during rendering, the smallest time unit 
is 1 frame, and the number of frames divided by the frame rate can be converted to an external time in seconds. But when storing files, all time 
values are stored as EncodeUint64 instead of EncodeInt64. When describing animation effects, the time in most cases is a positive number, 
and the negative time only appears during the rendering calculation process. However, using unsigned integer storage can occupy 1 bit less 
space than signed ones, so unsigned integers are uniformly used when storing time to files. In addition, even if there is a small probability of 
encountering negative time, the negative time can be restored normally according to unsigned storage and reading. The difference is that in the 
case of a negative number, converting it to an unsigned integer is a huge number, which may take up an extra byte of space for encoding 
integers. However, the probability of storing negative time in files is very low in general. 

 
ID 
The ID in the PAG file is uniformly described by Uint32, and EncodeUint32 is used for storage. Usually, Composition, Layer, and Mask will 
have ID class attributes. 

 
Enum 
Uint8 is used in PAG files to store enumerated types. For specific enumeration types, refer to Chapter 2: Enumeration. 

 
String 
String types use a null character to mark the end. 

Stirring Types 

Field Type Remarks 

String Uint8[0~n] non-empty character array 

StringEnd Uint8 marks the end, always 0 

 



 

Point  
Point is used to record the position of the x and y axes. 

Point Types 

 

Field Type Remarks 

x Float x-axis coordinate 

y Float y-axis coordinate 

 

Ratio 
Ratio is used to store the ratio. 

Ratio Type 

Field Type Remarks 

numerator EncodedInt32 numerator 

denominator EncodedUint32 denominator 

 

Color 
Color represents a color value, usually composed of 24-bit red, green, and blue colors. 

Color Types 

Field Type Remarks 

Red Uint8 Red value ( 0 ~ 255) 

Green Uint8 Green value (0 ~ 255) 

Blue Uint8 Blue value (0 ~ 255) 

 

FontData 
FontData identifies the font. 

FontData Types 

Field Type Remarks 

fontFamily String Font description 

fontStyle String Font style 

 

AlphaStop  
AlphaStop describes the gradient information of transparency. 

AlphaStop Types 



 

Field Type Remarks 

position Uint16 Start point. The float type is stored in Uint16, and the real value needs to be multiplied by The precision 
GRADIENT_PRECISION, Uint16() * 0.00002f 

midpoint Uint16 Middle point. The float type is stored in Uint16, and the real value needs to be multiplied by the precision 
GRADIENT_PRECISION, Uint16() * 0.00002f 

opacity Uint8 Transparency (0 ~ 255) 

 

ColorStop 
ColorStop describes the gradient information of color. 

AlphaStopTypes 

Field Type Remarks 

position Uint16 Start point. The float type is stored in Uint16, and the real value needs to be multiplied by the precision 
GRADIENT_PRECISION, Uint16() * 0.00002f 

midpoint Uint16 Middle point. The float type is stored in Uint16, and the real value needs to be multiplied by the precision 
GRADIENT_PRECISION, Uint16() * 0.00002f 

color Color Color value 

 

GradientColor 
GradientColor is used to describe the gradient information of color and transparency. 

GradientColor Types 

Field Type Remarks 

alphaCount EncodedUint 32 The length of the transparency gradient information array. A transparency gradient information 
will include, starting point: position, middle point: midpoint, and transparency value opacity 

colorCount EncodedUint 32 The color gradient information array. A color gradient information contains, starting point: position, 
middle point : midpoint, and color value color 

alphaStopList AlphaStop[alphaCount]  Consecutive alphaCount AlphaStops 

colorStopList ColorStop[colorCount] Consecutive colorCount ColorStops 

The corresponding storage structure is as follows: 



 

 

 

Text Document 
TextDocument text information includes text, font, size, color and other basic information. 

TextDocument Types 

Field Field Type Remarks 

applyFillFlag UB [ 1 ] Whether to apply a fill flag 

applyStrokeFlag UB [ 1 ] Whether to apply a stroke flag 

boxTextFlag UB [ 1 ]  

fauxBoldFlag UB [ 1 ] Whether to apply a bold flag 

fauxItalicFlag UB [ 1 ] Whether to apply an italic flag 

strokeOverFillFlag UB [ 1 ]  

baselineShiftFlag UB [ 1 ]  

fi rstBaseLineFlag UB [ 1 ]  

boxTextPosFlag UB [ 1 ]  

boxTextSizeFlag UB [ 1 ]  

fillColorFlag UB [ 1 ] Whether there is fill color information flag 

fontSizeFlag UB [ 1 ] Whether there is a font size flag 

strokeColorFlag UB [ 1 ] Whether there is a stroke color flag 

strokeWidthFlag UB [ 1 ] Whether there is a stroke width flag 

textFlag UB [ 1 ] Whether there is a text flag 

justifi cationFlag UB [ 1 ] Whether there is alignment information flag 



 

leadingFlag UB [ 1 ]  

trackkingFlag UB [ 1 ]  

hasFontDataFlag _ UB [ 1 ] Whether to include font information 

 UB [ 5 ] All 0, byte alignment 

baselineShift Float if baselineShiftFlag == 1 

firstBaseLine Float if fi rstBaseLineFlag == 1 

boxTextPosFlag Point if boxTextPosFlag == 1 

boxTextSizeFlag Point if boxTextSizeFlag == 1 

fillColor Color if fillColorFlag == 1 

fontSize Float if fontSizeFlag == 1 

strokeColor Color if strokeColorFlag == 1 

strokeWidth Float if strokeWidthFlag == 1 

text String if textFlag == 1 

justifi cationFlag Uint8 if justificationFlag == 1 

leadingFlag Float if leadingFlag == 1 

trackingFlag Float if trackingFlag == 1 

fontID EncodedUint32 if hasFontDataFlag == 1 

Path 
Path is used to identify information such as a path. The main information includes an action list and a coordinate list. 

PathVerb Types 

Field Type Attribute Value Coordinate Data Remarks 

Close UB [3] 0 No need Close the current path to the path start point 

Move UB [3] 1 Point Move the coordinate point to the specified position, and Point indicates the target 
point to move to 

Line UB [3] 2 Point Draw a line, and Point indicates the target point to draw a straight line to 

HLine UB[3] 3 Float Draw a horizontal line, with the X-axis moving while the Y-axis remains the same as 
the previous value. The float data represents the target position of X- axis 
movement. 

VLine UB[3] 4 Float Draw a vertical line, with the Y-axis moving and the X-axis remaining the same as the 
previous value. The float data represents the target position of the Y-axis movement 

Curve01 UB[3] 5 Point, 

Point 

Draw a cubic Bezier curve, with the first control point having the same 
value as the end point of the previous action. The two points represent the 
second control point and the end point, respectively. 



 

Curve10 UB[3] 6 Point, 

Point 

Draw a cubic Bezier curve, with two points representing the first and second 
control points, respectively, and the ending point being the same as the second 
control point. 

Curve11 UB[3] 7 Point, 

Point, 

Point 

Draw a cubic Bezier curve with three points representing the first control 
point, the second control point and the end point in sequence. 

Path Types 

Field Type Remarks 

numVerbs EncodedUint32 The length of the action list 

verbList UB[3][numVerbs] An array of action lists with a length of numVerbs, each value of the array is identified by a 
UB[3] to an enumeration value in PathVerb. 

numBits UB[5] Indicates the number of bits occupied by each value in the next floatList 

fioatList SB[numBits] 

[floatNum] 

Used to provide an array of float values for coordinate points, the length is floatNum, and each 
value of the array is stored by a SB[numBits] 

The calculation of floatNum can refer to the coordinate data column in the PathVerb table, where a Point can be equivalent to two 
consecutive Floats, representing the x and y coordinate values of the Point respectively. The value of floatNum is the total number of 
required Float data accumulated based on the number of Floats required for each action type in the VerbList. For each value in the floatList 
array, you need to read an SB[numBits] value first, then multiply it by SPATIAL_PRECISION to get a Float value. 

For example, a rectangle (x: 5, y: 0, r: 15, b: 20) can be described by a Path data structure as follows: 

• Execute Move to point (5, 0), need to record two Float values: 5, 0 

• Execute HLine to point (15, 0), only need to record one Float value: 15 

• Execute VLine to point (15, 20), only need to record one Float value: 20 

• Execute HLine to point (5, 20), only need to record one Float value: 5 

• Execute Close to close the rectangle and return to the starting point (5, 0), without recording any Float value. 

A total of 5 actions (Move, HLine, VLine, HLine, Close) and 5 Float coordinate data (5, 0, 15, 20, 5) need to be recorded. The corresponding 
Path storage structure is as follows: 



 

 

The storage of each Float value in floatList is first multiplied by 20 (1/SPATIAL_PRECISION), converted to an integer, and then stored as 
SB[numBits]. Among them, numBits is calculated based on the maximum value of 400 stored in the coordinate data. The binary 
representation of 400 is 110010000, occupying 9 bits. After adding the sign bits, at least 10 bits are needed. Finally, when the length of 
numBits is 10, it is sufficient enough to include each data in floatList. 

 ByteData 
ByteData identifies the length and content of the byte stream. 

ByteData Types 

Field Type Remarks 

length EncodedUint32 Byte length 

data Byte[length] Read length bytes 

BitmapRect 
Bitmap information. 

BitmapRect Types 

Field Field Type Remarks 

x EncodedInt32  

y EncodedInt32  

fileBytes ByteData Image data 

 
VideoFrame 
Video frame information. 

 



 

VideoFrame Types 

Field Field Type Remarks 

frame Time  

fileBytes ByteData Video frame data , the byte stream does not contain (0, 0, 0, 1) four-byte Start Code 

This chapter mainly describes the enumeration types used in PAG files and their meanings. 

BlendMode 
BlendMode Types 

Type Value Remarks 

Normal 0  

Multiply 1  

Screen 2  

Overlay 3  

Darken 4  

Lighten 5  

ColorDodge 6  

ColorBurn 7  

HardLight 8  

SoftLight 9  

Difference 10  

Exclusion 11  

Hue 12  

Saturation 13  

Color 1 4  

Lu minosity 1 5  

Add 1 6  

DestinationIn 2 1  

DestinationOut 2 2  

DestinationATop 2 3  

SourceIn 2 4  

SourceOut 2 5  

Xor 2 6  



 

TrackMatteType 
Type Value Remarks 

None 0  

Alpha 1  

AlphaInverted 2  

Luma 3  

LumaInverted 4  

MaskMode 
Coverage type for the mask 

MaskMode Types 

 

 

PolyStarType 
PolyStarType Types 

Type Value Remarks 

Star 0  

Polygon 1  

 

CompositeOrder 
Composite Order Types 

Type Value Remarks 

BelowPreviousInSameGroup 0  

AbovePreviousInSameGroup 1  

FillRule 

Type Value Remarks 

None 0  

Add 1  

Subtract 2  

Intersection 3  

Lighten 4  

Darken 5  

Difference 6  

Accum 7  



 

FillRule Types 

Type Value Remarks 

NonZeroWinding 0  

EvenOdd  1  

LineCap 
Type Value Remarks 

Butt 0  

Round 1  

Square 2  

LineJoin 
LineJoin Types 

Type Value Remarks 

Miter 0  

Round 1  

Bevel 2  

GradientFillType 
GradientFillType Types 

Type Value Remarks 

Linear 0  

Radial 1  

MergePathsMode 
MergePathsMode Types 

Type Value Remarks 

Merge 0  

Add 1  

Subtract 2  

Intersection 3  

ExcludeIntersections 4  

 

TrimPathsType 
TrimPathsType Types 



 

Type Value Remarks 

Simultaneously 0  

Individually 1  

 

ParagraphJustification 
ParagraphJustification Types 

Type Value Remarks 

LeftJustify 0  

CenterJustify 1  

RightJustify 2  

FullJustifyLastLineLeft 3  

FullJustifyLastLineRight 4  

FullJustifyLastLineCenter 5  

FullJustifyLastLineFull 6  

This chapter mainly introduces the structure of the PAG file and an overview of each element. 

PAG  
PAG files are mainly composed of FileHeader and TagBlock. TagBlock represents a data block consisting of a Tag list. All tags have the same 
structure, so if you encounter something you don't understand when parsing a PAG file, you can skip the current tag directly. 

 

File Header 
All PAG files have the following structure at the beginning of the file. For the type field, please refer to the definition in Chapter 1. 

FileHeader Structure 

Field Type Remarks 

Signature Uint8 signature byte, always ' P ' 

Signature Uint8 signature byte, always ' A ' 

Signature Uint8 signature byte, always ' G ' 

Version number Uint8 File version number, for example: 0x04 means PAG version 4 

File length Uint32 File length ( whole file, including FileHeader length ) 



 

Compression method Int8 The compression method of the identification file, reserved 

The PAG file headers all start with the three characters ' P ' ' A ' ' G '. 

Then the version number of the file is recorded. Note that the version number of the file is a value, not a character. For example, version 
4 stores Ox04 instead of ASCII characters ' 4' ( Ox 34 ). The current file version number is 1. 

The file length is the total length of the PAG file, including the FileHeader section. 

The compression method records the internal compression technique of the PAG file, which has not been used yet and is reserved. 

TagBlock  
Tag Block represents a data block consisting of Tag lists.

 

The structure of TagBlock is shown as follows: 

 

Among them, TagEnd is a special Tag, which is usually used to mark the end of the loop at this level and there is no more Tag structure to 
read. Some specific Tags will internally define whether they contain other sub-Tag lists, and also use TagEnd at the end to mark the end of the 
sub-Tag list loop and there are no more Tags to read. 

Tag  
A Tag consists of two main parts: TagHeader and TagBody.

 

The structure of Tag is as follows: 

 

TagHeader 
TagHeader records TagCode (type ID of Tag) and the byte stream length of TagBody. Since the TagBody may be very short or very long, for 
the sake of compression ratio, we divide the TagHeader into two types of short and long formats for storage. The short type TagHeader is used 
to record the maximum 62 bytes of TagBody data. The long type TagHeader uses a 32-bit unsigned integer to record the length of TagBody, 
which can store up to 4GB of data. 

TagHeader (short) Types 

Field Type Remarks 

TagCodeAndLength Uint16 The first 10 bits are the TagCode and the last 6 bits are the 
length of the TagBody. 

Note: The TagCodeAndLength field reads two bytes at a time, instead of 10 bits followed by 6 bits. PAG files are stored in little-endian byte 
order, so the two storage methods are different. 



 

If TagBody is 63 bytes or longer, it is stored in a long type TagHeader. The long type TagHeader contains a short type TagHeader structure, 
where the length of the TagBody recorded by the short type TagHeader is a fixed value: 0x3f (63), followed by a 32-byte unsigned integer 
representing the true length of TagBody. 

TagHeader (long) Types 

Field Type Remarks 

TagCodeAndLength Uint16 The first 10 bits are used as TaCode, and the last 6 bits are fixed as 0x3f to mark the 
TagHeader as long type. 

Length Uint32 The actual length of TagBody 

 

TagBody 

TagBody only defines a byte stream block, and the specific rules for parsing content are defined according to different TagCode categories. 
TagBody is also allowed to be absent. For example, the length of the TagBody read from its TagHeader is 0 for the special TagEnd mentioned 
earlier. Since the byte stream inside the TagBody can be completely customized, it can also be defined to continue to include a list of sub-Tags, 
that is, there is a case where a Tag can also contain one or more sub-Tags, so as to realize nesting. The following chapters will explain in detail 
how the TagBody corresponding to different TagCode categories is stored. Generally speaking, the internal storage of TagBody is the specific 
data of an attribute list. The storage methods can be divided into two categories: 

• If the attribute list described in TagBody is fixed from type to quantity, then the internal structure of the TagBody will directly arrange and 
combine the basic data types provided in Chapter 1 for definition. Similar to the definition method of the Path data structure, a new data 
structure is formed by using the existing data structure arrangement. When decoding, just pass the TagBody directly to the decoding module of 
the corresponding category. For this type of Tag, we will directly list the data structure of its TagBody in a table in the following chapters. 

• If the attribute list described in the TagBody is uncertain from type to quantity, a large number of additional identifier fields will be required. 
At this time, using the above-mentioned method to define the data structure will waste a lot of file space. For this type of Tag, we will use the 
dynamic data structure AttributeBlock to describe the content of the entire TagBody. Later chapters will introduce AttributeBlock in detail. 

The previous chapters introduced the data structure of Tags. Before explaining how the TagBody corresponding to each Tag type is stored, we 
first introduce a new dynamic data structure: AttributeBlock. When the attribute list to be stored is uncertain from type to quantity, a large 
number of additional status identifier fields will be required. This dynamic data structure is mainly used to maximize the compression of these 
identifiers and dynamically match different decoding modules according to the identifiers. 

Value and Property Attributes 
AttributeBlock is usually used to describe how to store the data of a set of attribute lists. Here we take the data structure of the Mask as an 
example. The list of attributes it needs to store is as follows: 

 

Field Type Remarks 

id Uint32 Mask ID 

inverted Bool Indicates whether the mask is inverted 

maskMode Uint8 The blend mode of the mask 

maskPath Property <Path> The vector path of the mask 

maskOpacity Property<Uint8> Transparency of the mask 

maskExpansion Property<Float> Edge extension parameters of the mask 



 

 

So far, all we have introduced are basic data types. You can see that in the attribute list of Mask, the types of the first three attributes are also 
this data type. These attributes are characterized by containing only one data value, and I can collectively refer to these attributes as Value 
attributes. Here we introduce another type called timeline attribute. You can use Property<T> to refer to any kind of timeline attribute, and T 
can be any basic data type such as Bool, String, Int8, Point, Path... and so on. If we replace T with a specific type, such as Property<Point>, 
then it represents the time attribute of the Point class. 

The main difference between the Value attribute and the Property attribute is that the Value attribute only contains one data value, while the 
Property attribute usually contains multiple data values of the entire timeline. Depending on the number of keyframes, it can contain one or 
more key points' data values. It can be simply understood as a collection of a series of Property values on the timeline. The Property attribute 
also contains time easing parameters and spatial easing parameters, which are used to control how the data values between keyframes produce 
instantaneous interpolation. The following chapters will introduce the storage structure of the Property attribute in detail. Here we only need to 
understand its timeline concept. 

For multiple attributes of Mask, the easiest way to store is to store the complete structure of each type, but obviously, this is a waste of space. 
We can find many situations where redundant data exists: 

• The inverted attribute is a Bool value, which needs to occupy 1 byte, but actually, only 1 bit can be used for identification. 

• maskMode is usually equal to the default value. In this case, there is no need to store the actual value, and 1 bit is used directly to indicate that 
it is equal to the default value. 

• All Property attributes: 1. If there is no spatial easing parameter, the relevant data may not be stored. 2. If there is no keyframe, that is, there is 
only one data value, the storage structure of the entire keyframe can be saved, and only one value can be stored. 3. If this value is still equal to 
the default value, you can only use 1 bit to indicate that it is equal to the default value. 

According to the above characteristics, it can be found that each attribute may have many special status flags, and making full use of these 
status flags can significantly reduce the file size in most cases. Especially for the Property attribute, a very complex data structure is required 
to record the complete storage of a timeline attribute. However, in most cases, the Property attribute may not have a keyframe, that is, it can be 
degenerated into a Value attribute for storage, so the unnecessary space occupied can be significantly reduced. Therefore, we use the data 
structure of AttributeBlock to describe this storage scenario that requires a large number of status flags. 

AttributeBlock Structure 
AttributeBlock mainly consists of two parts : by AttributeFlag The flag field consisting of lists and the AttributeContent A content 
area composed of lists. Tool The body structure is as follows: 

AttributeBlock is mainly composed of two parts: the flag bit area composed of the AttributeFlag list and the content area composed of the 
AttributeContent list. The specific structure is as follows: 



 

 

The sequence of each AttributeFlag corresponds to the sequence of AttributeContent. Each time an attribute list is given, we split the flag 
bit information and data content information of each attribute into a pair of AttributeFlag and AttributeContent structures, and then store 
them in order. For example, AttributeFlag 0 and AttributeContent 0 correspond to the ID attribute of the first item in the Mask attribute list. 
It can be seen from the figure that the storage structure is to store all the Flag lists before starting to store all the Content lists. This is done 
because each item in the Flag area is usually represented by a bit, and centralized storage can avoid frequent byte alignments, resulting in a lot 
of space waste. After reading the Flag area, a unified byte alignment will be performed, and the extra bits generated by the byte alignment will 
be set to 0, and then continue to store the AttributeContent area from the integer byte position. 

Note: In order to save file space, the number of attribute lists is not written into the file, but is hardcoded in the parsing code because the 
number of attributes for each specific AttributeBlock is fixed. During the parsing process, the number of attributes to be parsed can be known 
in advance. 

AttributeFlag 

By summarizing the characteristics of the Value attribute and Property attribute, we abstract the following AttributeFlag data structure. 

AttributeFlag Types 

Field Type Remarks 

exist UB[1] Identifies whether the corresponding AttributeContent exists 

animatable UB[1] Whether there is keyframe information, this field exists only when exist is 1 

hasSpatial UB[1] Whether there is spatial easing information, this field exists only when both exist 
and animatable are 1 

Each attribute can parse out such a data object describing the flag information, which is used to assist in decoding the subsequent 
AttributeContent area. However, the specific storage length of AttributeFlag generated by each attribute is dynamic, and the value range is 
0 to 3 bits. For example, the Value attribute may only occupy 1 bit at most, and only the exist flag will be read during decoding. The Property 
attribute will use up to 3 bits to store flag information. For example, when a Property attribute does not contain keyframes and the attribute 
value is equal to the default value, it only uses 1 bit (0) to store AttributeContent. If the exist flag is read as 0 during decoding, subsequent 
reads of the flag will be discarded. In the limit case, the entire attribute list does not contain keyframes and is equal to the default value, and 
finally only occupies the number of bits in the list to store all the exist flags as 0, and the entire Content area is empty. This can significantly 
reduce the file size that needs to be logged. 

 



 

AttributeType 

As mentioned earlier, the actual storage size of AttributeFlag may be 0 to 3 bits, and the Value type attribute will only read 1 bit fixedly. 
Therefore, when decoding, it is also necessary to know the specific attribute type in order to determine the reading rules of AttributeFlag. 
Earlier, we roughly divided attributes into Value and Property categories. In fact, they can be subdivided into multiple subcategories to further 
compress the space according to attribute characteristics. The following are all attribute categories used in the PAG file, and their 
corresponding bits in the Flag area: 

AttributeType Types 

Type Flag Area Remarks 

Value Fixed to 1 bit Ordinary Value attribute 

FixedValue Not occupied Fixed Value attribute 

BitFlag Fixed to 1 bit Value attribute of Bool value type 

SimpleProperty Occupy 1 ~ 2 bits Simple animation property 

DiscreteProperty Occupy 1 ~ 2 bits Discrete animation property (no interpolation) 

MultiDimensionProperty Occupy 1 ~ 2 bits Multi-dimensional time easing animation property 

SpatialProperty Occupy 1 ~ 3 bits Spatial easing animation property 

Custom Fixed to 1 bit Extension type, custom data reading rules 

The example code for reading AttributeFlag based on different AttributeTypes is as follows: 

 

AttributeFlag ReadAttributeFlag (  ByteBuffer *  byteArray ,  const AttributeBase *  config )  {  

AttributeFlag flag =  { } ;  

auto attributeType =  config - >  attributeType ;  

if ( attributeType = =  AttributeType: : FixedValue)  {  

flag. exist =  true;  

return flag;  

} 

flag. exist =  byteArray- > readBitBoolean( ) ;  

if ( ! flag.exist | |  

attributeType = =  AttributeType: : Value | |  

attributeType = =  AttributeType: : BitFlag | |  

attributeType = =  AttributeType: : Custom)  {  

return flag;  

} 

flag. animatable =  byteArray- > readBitBoolean( ) ;  

if ( ! flag. animatable | |  attributeType ! =  AttributeType: : SpatialProperty)  {  

return flag;  

} 

flag. hasSpatial =  byteArray- > readBitBoolean( ) ;  



 

return flag;  

} 

It can be seen that the FixedValue category does not read data from the Flag area, but directly returns the case where exist is true, indicating 
that the data identifying the attributes of this category will always exist. 

Note: In order to save file space, AttributeType is not written into the file, but is hardcoded and configured in the parsing code. As the 
AttributeType of each attribute is not likely to change, the specific attribute type to be parsed can be known in advance during the parsing 
process. 

AttributeContent 

According to the previous steps, we have been able to decode the AttributeFlag object, and then combined with the known AttributeType, we 
can start decoding the corresponding data for each AttributeContent. The following are the parsing rules corresponding to each AttributeType: 

• Value: If exist is true, read the AttributeContent data value, otherwise use the default value. 

• FixedValue: Ignore all flags and directly read the AttributeContent data value. 

• BitFlag: directly use the value of exist to return as Bool data, without reading AttributeContent data. 

• SimpleProperty, DiscreteProperty, MultiDimensionProperty, SpatialProperty: If animatable is false, directly follow the reading rules of the 
AttributeType Value, and judge whether to read a data value from AttributeContent or use the default value according to exist. If animatable is 
true, follow the decoding process of Property. The different Property types of these subdivisions and the hasSpatial flag are only used in 
decoding the internal data structure of the Property. The decoding rules inside Property will be described in detail later. 

• Custom: All the previous categories can use the general decoding module, but some AttributeContent may not be an attribute. After 
configuring the type as Custom, each Tag can specifically define which module this AttributeContent should use for parsing. The exist flag is 
used to determine whether there is a corresponding AttributeContent. In this way, custom data blocks can be inserted into the attribute list for 
overall storage. 

Note: In order to save file space, the default value of each attribute is not written into the file, but is hardcoded and configured in the 
parsing code. Because the default value of each attribute is not likely to change, the default value of the attribute to be parsed can be 
known in advance during the parsing process. 

After the above analysis, we have been able to completely decode the data structure of AttributeBlock. Given any set of attribute lists, you 
only need to list the necessary information such as the attribute order, the basic data type of each attribute, the attribute type, and the default 
value, and then refer to the previous AttributeBlock rules for decoding. If two columns of Attribute Type and Default Value appear in the 
subsequent data structure table, it means that it needs to be parsed according to the AttributeBlock data structure. The AttributeBlock structure 
table corresponding to the previous Mask can be defined as follows: 

AttributeBlock Structure Table for Mask 

Field Data Type Attribute Type Defaults Remarks 



 

id EncodedUint32 FixedValue 0 Mask ID 

inverted Bool BitFlag false Indicates whether the mask is inverted 

maskMode Uint8 Value 1 Blend mode of the mask 

maskPath Path SimpleProperty Empty Path object Vector path of the mask 

maskOpacity Uint8 SimpleProperty 255 Transparency of the mask 

maskExpansion Float SimpleProperty 0 Edge extension parameters of the mask 

: Property  
Property is the basic unit of dynamic properties, and the properties on most objects are Property. Because it is widely used, optimizing and 
compressing the storage structure of a single Property can significantly reduce the size of the entire file. Property is generally not stored 
separately but is stored as an AttributeContent in the AttributeBlock dynamic data structure alongside other Property or Value attributes as an 
attribute list. For the analysis of AttributeBlock, please refer to the previous chapter. Therefore, according to the description in the previous 
chapters, when we parse to the AttributeContent area corresponding to the Property attribute, we can then access the configuration parameters 
such as Data Type, AttributeType, and Default Value, as well as the previously read AttributeFlag data object. Through these auxiliary 
parameters, we will start to decode the content of the Property. 

 
Property  
The Property structure is mainly composed of the keyframe list of the keyframe structure, and the length of the list can be 0 to more. When 
the length of the keyframe is 0 (that is, AttributeFlag.animatable is false), the entire Property attribute contains only one valid value, so it can 
be degenerated into the Value attribute for storage, and continue to judge whether to read a data value from AttributeContent or set it as the 
default value. This part of the reading rules has been described before, and the content of this chapter continues to describe how to parse the 
AttributeContent corresponding to a Property attribute when AttributeFlag.animatable is true. Parsing the structure of a Property is actually 
parsing the structure of a set of keyframe lists. 

Keyframe  
Property usually contains several keyframe information. A key frame includes the start and end time of the frame, as well as the start and 
end attribute values, as well as the type of differentiator that identifies the calculation method for attribute values, time easing parameters, 
etc. For complex Property attributes, its keyframes may also contain multi-dimensional time easing parameters or additionally contain 
spatial easing parameters. Let's first look at the data fields that a keyframe needs to record: 

KeyFrame Data Lists 

Field Type Remarks 

startValue Generic value (any basic data type) Start value 

endValue Generic value (any basic data type) End value 

startTime Time (Int64) The start time value of the keyframe 

endTime Time (Int64) The end time value of the keyframe 

interpolationType Enum (Uint8) Interpolation type 

bezierOut Point[dimensionality] Time easing parameter array (the first control point of the Bezier curve ) 

bezierIn Point [dimensionality] Time easing parameter array (the second control point of the Bezier curve ) 

spatialOut Point Spatial easing parameters (the first control point of the Bezier curve ) 



 

spatialIn Point Spatial easing parameters (the second control point of the Bezier curve ) 

 

StartValue and endValue represent the start value and end value of this keyframe interval, and the corresponding startTime and endTime 
represent the start time and end time of this keyframe interval. Therefore,  when the value is equal to startTime, startValue will be returned; 
when the value is equal to endTime, endValue will be returned. At the moment between startTime and endTime, the value is determined 
by the interpolationType. The interpolation types are as follows:: 

KeyframeInterpolationType 

Type Value Remarks 

None 0 Invalid 

Linear 1 Linear interpolation 

Bezier 2 Use Bezier curve interpolation based on time easing parameters 

Hold 3 The entire interval is equal to startValue except for the endTime moment, and endTime 
can switch to endValue instantly. 

Keyframe  

Combining all the above data structures, it can be concluded that not all data fields of the keyframe need to be stored completely. There 
are mainly the following scenarios to save storage space: 

• When the interpolation type is not equal to Bezier, there is no need to store the time easing parameters bezierOut and bezierIn. 

• When the property type is DiscreteProperty, it means that the interpolation type can only be Hold, and there is no need to store 
interpolationType. This situation usually occurs when the underlying data type of an attribute is a Bool value or an enumeration. Since its 
data is discrete, the intermediate interpolation between true and false is essentially impossible. 

• When the property type is MultiDimensionProperty, it means that the time easing parameter is composed of multiple Bezier curves, each 
individually controlling the subeasing of the data value, usually appearing on the timeline attribute representing scaling. The specific 
number of Bezier curves is determined according to the data types of startValue and endValue. For example, when the data type is Point, 
the time easing parameter is a 2-dimensional array, and two Bezier curves control the independent easing of the x and y axes respectively. 
For cases where the dimension is not a MultiDimensionProperty, we do not need to determine the dimension based on the underlying data 
type. By default, only the one-dimensional time easing parameters are stored. 

• When the attribute type is SpatialProperty, it means that the key frame may have spatial easing parameters. At this time, it is necessary to 
judge whether the actual current keyframe has these parameters according to the AttributeFlag.hasSpatial flag. Only this attribute needs to 
use the third hasSpaital flag on AttributeFlag. For other attribute types, there is no need to judge or store the spatial easing parameters 
spatialOut and spatialIn. 

In addition to saving storage space through judgment in the above scenarios, we also adopt other compression strategies: when actually 
storing the keyframe list, we store one type of data for each keyframe in sequence and then store the next type of data collectively instead of 
storing a keyframe and then storing the next keyframe. The advantage of this is that similar data can be compressed centrally. For example, 
interpolationType usually only occupies 2 bits, and centralized storage can reduce the extra space waste caused by byte alignment. For 
another example, since the startValue and startTime of the next keyframe are always equal to the endValue and endTime of the previous 
keyframe, centralized storage can also skip duplicate data between frames that do not need to be stored. 

 

Property  
The specific storage structure of the Property is as follows: 

Note: This only describes the read storage structure when AttributeFlag.animatable is true. If AttributeFlag.animatable is false, refer to the 
previous method to judge whether to read a data value from AttributeContent or use the default value. 

 

Property Types 



 

Field Type Remarks 

numFrames EncodedUint32 The length of the keyframe array. 

interpolationTypeList UB[2][numFrames] The interpolation type corresponds to each keyframe. It read numFrames 
times in total. Skip this block if the property type is DiscreteProperty. 

 

timeList 

 

EncodedUint64[numFrames +1] 

The start and end time of each Keyframe. Since the start time of the next 
keyframe is equal to the end time of the previous keyframe, only read 
numFrames+1 times. 

 

valueList _ 

 

PropertyValueList 

The start value and end value of each Keyframe. Different basic data types 
have different storage methods, and the reading rules of PropertyValueList 
will be introduced in detail later. 

timeEaseNumBits UB[5] The number of storage bits occupied by each time easing parameter 
component. 

timeEaseList TimeEaseValueList An array of time easing parameters. The reading rules of 
TimeEaseValueList will be introduced in detail later. 

spatialFlagList UB[numFrames * 2] An array of flags, indicating whether each subsequent keyframe contains 
spatialIn and spatialOut parameters respectively. 

spatialEaseNumBits UB[5] The number of storage bits occupied by each spatial easing parameter 
component. 

 

spatialEaseList 

 

SpatialEaseValueList 

Spatial easing parameter array. The reading rules of 
SpatialEaseValueList will be introduced in detail later. If the property 
type is not SpatialProperty or AttributeFlag.hasSpatial is false, skip 
this block. 

Note: A byte alignment is performed at the end of each block read. It will skip the remaining bits that have not been read, start from the next 
integer byte position, and then read the next block. 

PropertyValueList 
The PropertyValue block stores a list of basic data types. The content of the list represents the start value and end value of each keyframe. 
Since the start value of the next keyframe is always equal to the end value of the previous keyframe, the total length of the list is numFrames + 
1. The specific storage rules of this data list vary according to the basic data type, as shown in the following table: 

PropertyValue Storage Method 

Type Storage Method 

Float[numFrames + 1] Store numFrames + 1 Float data respectively in turn. 

Bool[numFrames + 1] Store numFrames + 1 bits in turn, each bit represents a Bool value. 

Uint8[numFrames + 1] Compressed and stored as 32-bit continuous unsigned integers, first store numBits of UB[5], and then 
store numFrames + 1 UB[numBits] data in turn; each data point represents the original Uint8 value. 

Uint32[numFrames + 1] Compressed and stored as 32-bit continuous unsigned integers, first store numBits of UB[5], and then 
store numFrames + 1 UB[numBits] data in turn; each data point represents the original Uint32 value. 

 

Point[numFrames + 1] 

Usually, numFrames + 1 Point data are stored sequentially. If the property type is SpatialProperty, 
divide the two Floats of each Point data by SPATIAL_PRECISION to convert it into a Uint32 list with 
a length of (numFrames+1)*2, and then compress and store it as a 32-bit continuous unsigned integer. 
The storage rules are the same as above. 

Time[numFrames + 1] Store numFrames + 1 EncodedUint 64 data in turn, each data representing the original Time data. 



 

ID[numFrames + 1] Store numFrames + 1 EncodedUint 32 data in turn , each data represents the original ID data . 

Color[numFrames + 1] Store numFrames + 1 Color data in turn. 

Ratio[numFrames + 1] Store numFrames + 1 Ratio data in turn. 

String[numFrames + 1] Store numFrames + 1 String data in turn. 

Path numFrames + 1] Store numFrames + 1 Path data in turn. 

TextDocument[numFrames + 1] Store numFrames + 1 TextDocument data in turn. 

GradientColor[ numFrames + 1] Store numFrames + 1 GradientColor data in turn. 

 

TimeEaseValueList
 

The storage structure of TimeEaseValueList is as follows: 

 

The reading of time easing parameters not only relies on the previous timeEaseNumBits, but also relies on a dimensionality parameter. 
Dimensionality represents the dimensions of the bezierIn and bezierOut arrays for each keyframe. It can be deduced from the number of 
components of the property type and the basic data type. For example, when the property type is MultiDimensionProperty, for attributes with 
a data type of Point, dimensionality is 2; if the property type is not MultiDimensionProperty, dimensionality is always 1. Each item in the 
timeEaseList list represents a Float component of the time easing parameter coordinate point. Two Floats form a Point. Usually, each 
keyframe of a one-dimensional time easing property has two Points, bezierIn and bezierOut, which means that the 4 Float components in 
timeEaseList need to be expressed sequentially. In the case of multi-dimensionality, all dimension time easing parameter arrays of this frame 
are read sequentially, and then the data of the next frame is read. In addition, if the current keyframe interpolation type is not Bezier, the 
process of reading time easing parameters for this frame will be skipped. The specific parsing code is as follows: 



 

int dimensionality =  config. attributeType = =  AttributeType: : MultiDimensionProperty ?  

config. dimensionality( )  :  1 ;  

auto numBits =  byteArray- > readNumBits( ) ;  

for ( auto&  keyframe: keyframes)  {  

if ( keyframe- > interpolationType ! =  KeyframeInterpolationType: : Bezier)  {  

continue;  

} 

float x,  y; 

for (int i = 0; i < dimensionality; i++) { 

x = byteArray->readBits(numBits) * BEZIER_PRECISION; 

y = byteArray->readBits(numBits) * BEZIER_PRECISION; 

keyframe->bezierOut.emplace_back(x, y); 

x = byteArray->readBits(numBits) * BEZIER_PRECISION; 

y = byteArray->readBits(numBits) * BEZIER_PRECISION; 

keyframe- > bezierIn. emplace_ back( x,  y) ;  

} 

} 

 

Spatial EaseValueList
 

The storage structure of SpatialEaseValueList is as follows: 

 

Note: If the property type is not SpatialProperty or AttributeFlag.hasSpatial is false, this block does not need to be read. The reading of 
spatial easing parameters depends on the previously read spatialFlagList and spatialEaseNumBits. The spatialFlagList is twice as long as the 
number of keyframes because the spatial easing parameters of each keyframe contain two Point data. The values in the spatialFlagList list in 
turn indicate whether the spatialIn and spatialOut of each keyframe exist. If not present, use the default (0, 0) point. In addition, the read data 
is an integer, which needs to be multiplied by SPATIAL_PRECISION and converted to Float as the x and y data components of Point. The 
specific parsing code is as follows: 

 



 

int index = 0; 

for ( auto&  keyframe: keyframes)  {  

auto hasSpatialIn =  spatialFlagList[ index+ + ] ;  

auto hasSpatialOut =  spatialFlagList[ index+ + ] ;  

if ( hasSpatialIn)  {  

keyframe- > spatialIn. x =  byteArray- > readBits( spatialEaseNumBits)  *  SPATIAL_ PRECISION;  

keyframe- > spatialIn. y =  byteArray- > readBits( spatialEaseNumBits)  *  SPATIAL_ PRECISION;  

} 

if ( hasSpatialOut)  {  

keyframe- > spatialOut. x =  byteArray- > readBits( spatialEaseNumBits)  *  SPATIAL_ PRECISION 

keyframe- > spatialOut. y =  byteArray- > readBits( spatialEaseNumBits)  *  SPATIAL_ PRECISION 

} 

} 

 

PAG uses 10 bits to store TagCode and can store up to 1024 kinds of Tags. Among them, 52 kinds of tags have been used, and the list is as 
follows: 

TagCode Types 

Name Value ( Decimal ) Remarks 

End 0 Tag end identifier 

FontTables 1 Font collection, containing multiple fonts 

VectorCompositionBlock 2 Vector combination information 

CompositionAttributes 3 The basic attribute information of the composition 

ImageTables 4 Image collection information 

LayerBlock 5 Layer information 

LayerAttributes 6 The basic attribute information of  layer 

SolidColor 7 Border color 

TextSource 8 Text information, including: text , font, size, color and other basic information 

TextPathOption 9 Text drawing information , including: drawing path, front, back, left, and right 
spacing, etc. 

TextMoreOption 1 0 Text additional information 

ImageReference 1 1 Image reference , pointing to an image 

CompositionReference 1 2 Composition reference , pointing to a composition 

Transform2D 1 3 2D transform information 

MaskBlock 1 4 Mask information 



 

 

End 
The End tag marks the end of the TAG. When the decoder reads this tag, it means that the content of this TAG has been read. If the Tag 
contains nesting, when encountering the End mark, you need to jump out of the current Tag to read and transfer to the outer Tag reading logic. 

End Structure Table 

Type Type Remarks 

End Uint16 Tag end identifier 

 

FontTables 

ShapeGroup 1 5 Shape information 

Rectangle 1 6 Rectangle information 

Ellipse 1 7 Ellipse information 

PolyStar 1 8 Polygonal star 

ShapePath 1 9 Shape path information 

Fill 2 0 Fill rule information 

Stroke 2 1 Stroke 

GradientFill 2 2 Gradient fill 

GradientStroke 2 3 Gradient stroke 

MergePaths 2 4 Merge paths 

TrimPaths 2 5 Trimming paths 

Repeater 2 6 Repeater 

RoundCorners 2 7 Round corners 

Performance 2 8 File performance information, which is used to check whether PAG file 
performance meets the standard. 

DropShadowStyle 2 9 Drop shadow 

BitmapCompositionBlock 4 5 Bitmap sequence frame 

BitmapSequence  4 6 Bitmap sequence 

ImageBytes 4 7 Image byte stream 

ImageBytes2 4 8 Image byte stream (with scaling) 

ImageBytes3 4 9 Image byte stream (with transparent channel) 

VideoCompositionBlock 5 0 Video sequence frame 

VideoSequence 5 1 Video sequence 



 

Font Tables is a collection of font information. 

Font Tables Structure Table 

Field Type Remarks 

count EncodedUint32 Number of fonts 

fontData FontData[] Font array 

 

VectorCompositionBlock 
VectorCompositionBlock is a collection of vector graphics. It can contain simple vector graphics, and can also contain one or more 
VectorComposition. 

Vectorcompositionblock Structure Table 

 

Field Type Remarks 

id EncodedUint32 Unique identifier 

TagBlock TagBlock TagBlock data block, refer to Chapter 3 TagBlock . 

Include two TAGs: CompositionAttributes (basic attribute information of the composition), 
LayerBlock ( layer information ) 

 

CompositionAttributes 
CompositionAttribute stores the basic attribute information of Composition. It can contain simple vector graphics, and can also contain one or 
more VectorComposition 

Field Type Remarks 

width EncodedInt32 layer width 

height EncodedInt32 layer height 

duration EncodedUint64 duration 

frameRate Float frame rate 

backgroundColor Color background color 

 

ImageTables 
ImageTables is a collection of image information. 

ImageTables Structure Table 

Field Type Remarks 

count EncodedInt32 number of images 

images ImageBytes[count] image array 

 



 

LayerBlock 
LayerBlock is a collection of layer information. 

LayerBlock Structure Table 

Field Type Remarks 

type Uint8 Layer type 

id EncodedUint32 unique identifier of layer 

 

Tag Block 

 

TagBlock 

TagBlock data block, refer to Chapter 3 TagBlock 

Contains Tags: LayerAttributes, LayerAttributes2, MaskBlock, Transform2D, SolidColor, TextSource, 
TextPathOption, TextMoreOption, CompositionReference, ImageReference, etc. 

 

LayerAttributes 
LayerAttributes is the attribute information of the layer. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

isActive Bool BitFlag true If false , it will not be rendered. 

autoOrientation Bool BitFlag false Adaptive screen ratio 

parent EncodedUint32 Value 0 Layer ID 

stretch Ratio Value ( 1,1 ) Stretch ratio 

startTime Time Value 0 Start time 

blendMode Enumeration (Uint8) Value BlendMode:: Normal Layer blend mode 

trackMatteType Enumeration (Uint8) Value TrackMatteType::None Track mask 

timeRemap Float SimpleProperty 0.0f  

duration Time FixedValue 0 Time interval 

 

SolidColor 
SolidColor identifies the border width height and color attribute information. 

SolidColor Structure Table 

Field Field Type Remarks 

solidColor Color Color value 

width EncodedInt32 Width 

height EncodedInt32 Hight 

 

TextSource 



 

TextSource indicates text information, including text, font, size, color and other basic information. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

sourceText TextDocument DiscreteProperty TextDocument  

 

TextPathOption 
TextPathOption indicates text drawing information, including drawing path, front, back, left, and right spacing, etc. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remark 

path EncodedUint32 Value 0 Mask ID 

reversedPath Bool DiscretePro perty false  

perpendicularToPath Bool DiscreteProperty false  

forceAlignment Bool DiscreteProperty false  

firstMargin Float SimpleProperty 0.0f  

lastMargin Float SimpleProperty 0.0f  

 

TextMoreOption 
TextMoreOption indicates additional information about the text. 

 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

anchorPointGrouping Enumeration (Uint8) Value  ParagraphJustify cation::LeftJustify  

groupingAlignment Point MultiDimensionProperty  ( 0 .0 )  

 
ImageReference 
ImageReference is the image reference tag, which stores the unique ID of an image and can index real image information by ID. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

id EncodedUint32    

 
CompositionReference 
CompositionReference is the layer combination index tag, which stores the unique ID of a layer composition and can index real layer 
composition by ID. 



 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

id EncodedUint32    

copositionStartTime Time   start time 

 
Transform2D 
Transform2D indicates the 2D transformation information, including anchor point, scaling, rotation, x-axis offset, y-axis offset and other 
information. 

 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

anchorPoint Point Value ( 0.0) anchor point 

position Point Value ( 0.0) location information 

xPosition Float Value 0.0 x-axis offset 

yPosition Float Value 0.0 y-axis offset 

scale Point Value ( 0.0) scaling 

rotation Float Value 0.0 rotation 

opacity Uint8 Value 255 Transparency (0~255) 

 

Mask 
Mask tags. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

id EncodedUint32 FixedValue 0  

inverted Bool BitFlag false  

maskMode Enumeration (Uint8) Value MaskMode::Add  

maskPath Path SimpleProperty   

maskOpacity Uint8 SimpleProperty 255 Transparency (0 ~ 255) 

maskExpansion Float SimpleProperty 0.0f  

 

ShapeGroup 
ShapeGroup indicates the drop shadow tag. 

AttributeBlock Structure Table 



 

Field Field Type Attribute Type Defaults Remarks 

blendMode Enumeration (Uint8) Value BlendMode::Normal  

anchorPoint Point SpatialProperty (0.0) anchor point 

position Point SpatialProperty (0.0) location information 

scale Point MultiDimensionProperty (1, 1) scaling 

skew Float SimpleProperty 0.0  

skewAxis Float SimpleProperty 0.0 y-axis offset 

rotation Float SimpleProperty 0.0 rotation 

opacity Uint8 SimpleProperty 255 Transparency (0 ~ 255) 

TagBlock TagBlock   TagBlock data block, refer to Chapter 3 TagBlock. 

 

Rectangle 
Rectangular tag. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

reversed Bool BitFlag false  

size Point MultiDimensionProperty  (100, 100) Width and height 

position Point SpatialProperty ( 0,0 ) Location 

roundness Float SimpleProperty 0.0f  

 

Ellipse 
Ellipse tag. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

reversed Bool BitFlag false  

size Point MultiDimensionProperty  (100,100) Width and height 

position Point SpatialProperty y  ( 0,0 ) Location 

 

PolyStar 
Polygonal star tag. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 



 

 

 

ShapePath 
ShapePath tag. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

shapePath Path SimpleProperty   

 
Fill Tags 
Fill tag. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

blendMode Enumeration (Uint8) Value BlendMode::Normal  

composite Enumeration (Uint8) Value CompositeOrder: : BelowPreviousInSameGroup  

fillRule Enumeration (Uint8) Value FillRule::NonZeroWinding  

color Color SimpleProperty Red  

opacity Uint8 SimpleProperty 255 Transparency (0 ~ 255) 

 

Stroke 
Stroke tag. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

blendMode Enumeration(Uint8) Value BlendMode::Normal  

reversed Bool BitFlag false  

polyType Enumeration (Uint 8) Value PolyStarType::Star  

points Float SimpleProperty 5.0f  

position Point SpatialProperty y  (0,0) Location 

rotation Float SimpleProperty 0.0f  

innerRadius Float SimpleProperty 50.0f  

outerRadius Float SimpleProperty 100.0f  

innerRoundness Float SimpleProperty 0.0f  

outerRoundness Float SimpleProperty 0.0f  



 

composite Enumeration (Uint8) Value CompositeOrder: : BelowPreviousInSameGroup  

lineCap Enumeration (Uint8) Value LineCap::Butt  

lineJoin Enumeration (Uint8) Value LineJoin::Miter  

miterLimit Float Simple Property 4.0f  

color Color Simple Property White  

opacity Uint8 Simple Property 255 Transparency (0 ~ 255) 

strokeWidth Float SimpleProperty 2.0f  

 

GradientFill 
GradientFill tag. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

blendMode Enumeration (Uint8) Value BlendMode::Normal  

composite Enumeration (Uint8) Value CompositeOrder: : BelowPreviousInSameGroup  

fillRule Enumeration (Uint8) Value FillRule::NonZeroWinding  

fillType Enumeration (Uint8) Value GradientFillType::Linear  

startPoint Point SpatialProperty  ( 0,0 ) start point 

endPoint Point SpatialProperty  (100,0) end point 

colors Color[] SimpleProperty   

opacity Uint8 SimpleProperty 255 Transparency (0 ~ 255)  

 

GradientStroke 
GradientStroke tag. 

 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

blendMode Enumeration (Uint8 ) Value BlendMode::Normal  

composite Enumeration (Uint8 ) Value CompositeOrder: : BelowPreviousInSam
eGroup 

 

fillType Enumeration (Uint8 ) Value GradientFillType::Linear  



 

startPoint Point SpatialProperty  ( 0,0 ) start point 

endPoint Point SpatialProperty  (100 ,0) end point 

color Color SimpleProperty White  

opacity Uint8 SimpleProperty 255 Transparency ( 0 ~ 255 ) 

strokeWidth Float SimpleProperty 2.0f  

lineCap Enumeration (Uint8 ) Value LineCap::Butt  

lineJoin Enumeration (Uint8 ) Value LineJoin::Miter  

miterLimit Float SimpleProperty 4.0f  

dashLength UB[3]   dashLength = UB[3] + 1 

dashOffsetFlag .  exist UB[1]   Whether to contain the 
dashOffset tag 

dashOffsetFlag.animatable UB[1]   if dashOffsetFlag.exist= 1 

 

MergePaths 
MergePaths tag. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

mode Enumeration (Uint 8 ) Value MergePathsMode::Add  

 

TrimPaths 
TrimPaths tag. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

start Float SimpleProperty 0.0f  

end Float SimpleProperty 100.0f  

offset Float SimpleProperty 4.0f  

trimType Enumeration (Uint8) Value  TrimPathsType::Simultaneously  

 

Repeater 
Repeater tag. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 



 

composite Enumeration 
(Uint8) 

Value CompositeOrder: : BelowPreviousInSameGroup  

copyes Float SimpleProperty 3.0f  

offset Float SimpleProperty 0.0f  

anchorPoint Poi nt SpatialProperty  (0,0)  

position Point SpatialProperty  (100,0)  

scale Point MultiDimensionProperty (1.1) scaling 

rotation Float SimpleProperty 0.0f  

startOpacity Uint8 SimpleProperty 255 Transparency (0 ~ 255) 

end Opacity Uint8 SimpleProperty 255 Transparency (0 ~ 255) 

 

RoundCorners 
Round Corners tag. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

radius Float SimpleProperty 10.0f  

Performance 
Performance tag mainly stores PAG performance index data. 

Performance Structure Table 

Field Field Type Remarks 

renderingTime EncodedInt 64 Time cost of rendering 

imageDecodingTime EncodedInt 64 Time cost of decompression 

presenttingTime EncodedInt 64  

graphicsMemory EncodedInt 64 Rendering memory 

 

DropShadowStyle 
DropShadowStyle tag. 

AttributeBlock Structure Table 

Field Field Type Attribute Type Defaults Remarks 

blendMode Enumeration 
(Uint8) 

DiscreteProperty BlendMode::Normal  

color Color SimpleProperty Black  

opacity Uint8 SimpleProperty 191 Transparency (0 ~ 255) 



 

angle Float SimpleProperty 120.0f  

distance Float SimpleProperty 5.0f  

size Float DiscreteProperty 5.0f  

 

BitmapCompositionBlock 
BitmapCompositionBlock is the tag of the bitmap sequence frame. 

AttributeBlock Structure Table 

Field Field Type Remarks 

id EncodedUint32 unique identifier 

TagBlock TagBlock TagBlock data block, refer to Chapter 3 TagBlock . 

Contain two TAGs: CompositionAttributes (basic attribute information of composition) and 
BitmapSequence (bitmap information)  

 

BitmapSequence 
BitmapSequence tag. 

BitmapSequence Structure Table 

 

 

ImageBytes 
ImageBytes is a kind of image tag that stores compressed image-related attribute information. 

ImageBytes Structure Table 

Field Field Type Remarks 

id EncodedUint32  

fileBytes ByteData image byte stream 

 

ImageBytes2  
ImageBytes2 is version 2 of the image tag, which not only stores the information of ImageBytes but also allows the recording of the scaling 
parameters of the image. Usually, the image is stored according to the actual maximum size used, not the original size. 

Field Field Type Remarks 

width EncodedUint32  

height EncodedUint32  

frameRate Float  

frameCount EncodedUint 32 Number of bitmap frames 

isKeyFrameFlag[frameCount]  UB[frameCount] frameCount flags whether they are keyframes 

bitmapRect[frameCount] BitmapRect[frameCount] frameCount data of  BitmapRect 



 

ImageBytes 2 Structure Table 

Field Field Type Remarks 

id EncodedUint32  

fileBytes ByteData image byte stream 

scaleFactor Float scaling ratio (0 ~ 1.0) 

 

ImageBytes3  
ImageBytes3 is version 3 of the image tag. In addition to containing the information of ImageBytes2, it also allows recording the image after 
removing the transparent border. 

 

Field Field Type Remarks 

id EncodedUint32  

fileBytes ByteData image byte stream 

scaleFactor Float scaling ratio (0 ~ 1.0) 

width _ EncodedInt32 original picture width 

width EncodedInt32 original picture width 

anchorX EncodedInt32 The x-axis coordinate of the starting point of the opaque area in the original image 

anchorY EncodedInt32 The y-axis coordinate of the starting point of the transparent area in the original image 

 

VideoCompositionBlock 
VideoCompositionBlock stores one or more video sequence frames of different sizes. 

VideoCompositionBlock Structure Table 

Field Field Type Remarks 

id EncodedUint32 unique identifier 

hasAlpha Bool Whether there is an Alpha channel 

CompositionAttributes CompositionAttributesTag   

 

TagBlock 

 

TagBlock 

TagBlock data block, refer to Chapter 3 TagBlock . 

Contains two TAGs: CompositionAttributes (basic attribute information of 
composition) and VideoSequence (bitmap information)  

 

VideoSequence 
VideoSequence stores 1 version of the video sequence frame structure. 

VideoSequence Structure Table 



 

Field Field Type Remarks 

width EncodedUint32  

height EncodedUint32  

frameRate Float  

alphaStartX EncodedInt32 This value will only exist if the hasAlpha read from 
VideoCompositionBlock is 1. 

alphaStartY EncodedInt32 This value will only exist if the hasAlpha read from 
VideoCompositionBlock is 1. 

spsData ByteData The byte stream that has been read does not contain (0, 0, 0, 1) four-byte 
Start Code 

ppsData ByteData The byte stream that has been read does not contain (0, 0, 0, 1) four-byte 
Start Code 

frameCount EncodedUint32 Number of bitmap frames 

isKeyFrameFlag 

[frameCount] 

UB[frameCount] frameCount flags whether they are key frames 

videoFrames VideoFrame[frameCount]  Number of video frames 

 


